Enumeration of area-weighted Dyck paths with restricted height

نویسندگان

  • Aleksander L. Owczarek
  • Thomas Prellberg
چکیده

Dyck paths are directed walks on Z starting at (0, 0) and ending on the line y = 0, which have no vertices with negative y-coordinates, and which have steps in the (1, 1) and (1,−1) directions [11]. We impose the additional geometrical constraint that the paths have height at most h, that is, they lie between lines y = 0 and y = h. Given a Dyck path π, we define the length n(π) to be half the number of its steps, and the area m(π) to be the sum of the starting heights of all steps in the (1, 1) direction in the path. Actually, m(π) is the value of π in the classical lattice of Dyck paths [4, 9], and is equivalent to the number of diamond plaquettes under the Dyck path. An alternative definition of the area is the sum of the heights of all steps in the Dyck path, which evaluates to n(π) + 2m(π) and is equivalent to the number of triangular plaquettes under the Dyck path. The definition used here has the advantage of enabling a more elegant and concise mathematical formulation of our results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple and Unusual Bijection for Dyck Paths and Its Consequences Sergi Elizalde and Emeric Deutsch

In this paper we introduce a new bijection from the set of Dyck paths to itself. This bijection has the property that it maps statistics that appeared recently in the study of pattern-avoiding permutations into classical statistics on Dyck paths, whose distribution is easy to obtain. We also present a generalization of the bijection, as well as several applications of it to enumeration problems...

متن کامل

An Infinite Family of Adsorption Models and Restricted Lukasiewicz Paths

We define (k, )-restricted Lukasiewicz paths, k ≤ ∈ N0, and use these paths as models of polymer adsorption. We write down a polynomial expression satisfied by the generating function for arbitrary values of (k, ). The resulting polynomial is of degree +1 and hence cannot be solved explicitly for sufficiently large . We provide two different approaches to obtain the phase diagram. In addition t...

متن کامل

Bijections from Weighted Dyck Paths to Schröder Paths

Kim and Drake used generating functions to prove that the number of 2-distant noncrossing matchings, which are in bijection with little Schröder paths, is the same as the weight of Dyck paths in which downsteps from even height have weight 2. This work presents bijections from those Dyck paths to little Schröder paths, and from a similar set of Dyck paths to big Schröder paths. We show the effe...

متن کامل

Restricted Dumont permutations, Dyck paths, and noncrossing partitions

We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that use...

متن کامل

Dyck Paths with Peaks Avoiding or Restricted to a Given Set

In this paper we focus on Dyck paths with peaks avoiding or restricted to an arbitrary set of heights. The generating functions of such types of Dyck paths can be represented by continued fractions. We also discuss a special case that requires all peak heights to either lie on or avoid a congruence class (or classes) modulo k. The case when k = 2 is especially interesting. The two sequences for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2012